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INTRODUCTION 
Differences in RNA expression across two alleles in the same 
individual (allelic expression imbalance; AEI) is a powerful 
phenotype for identifying functional regulatory SNPs, allele-
specific epigenetic programming, and loss-of-heterozygosity 
in cancer, among other things.  The advent of high-
throughput RNA-Seq allows us to survey the entire 
transcriptome for AEI.  However, existing studies [1-3] 
highlight significant challenges that obscure reliable AEI 
detection, especially for modest differences in expression 
across the two alleles (1.5 to 2-fold AEI).  Most notably, 
detecting AEI with standard methods requires high read 
depth, which cannot be easily obtained by whole 
transcriptome RNA-Seq for the majority of genes.  Therefore, 
we need to maximize our utilization of the information 
generated by RNA-Seq to more reliably detect modest AEI.  
Here, we test whether a Skellam mixture model is suitable for 
detecting robust AEI. 

RESULTS 
	
  
Parameter Estimates of Skellam Mixture:  

SNPs Classification:  

CONCLUSIONS & FUTURE DIRECTIONS 
By applying a Skellam mixture model to our allelic RNA 
expression data, we are capable of classifying individual 
SNPs into distinct components.  By testing how well 
SNPs grouped within individual samples fit the estimated 
proportions of the mixture model, we find it possible to 
identify samples that exhibit strong AEI, such as MB011. 
This analysis did not adjust for sequencing depth before 
fitting the mixture model, which is necessary when read 
depths across samples are highly variable and is part of 
our future workflow. This novel approach provides a 
statistical framework for testing for AEI in RNA-Seq data.  
Our future studies will test the feasibility of constructing 
Skellam mixture models or mixture of negative binomial 
differences from larger datasets that include multiple 
genes, with the goal of applying this methodology 
genome-wide. 
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AIM 
1.  Estimate probabilities of SNP-wise AEI assuming finite 

Skellam mixture distribution    

2.  Fish/classify SNPs with strong evidence of AEI 

3.  Identify variables that characterize the subsets of SNPs 
with strong evidence of AEI 

http://mbi.osu.edu/        http://pharmacogenomics.osu.edu/       https://neyman.cph.ohio-state.edu/ 

Statistical Methods 
In general, the “reference” reads (“ref”) and the “variant” reads 
(“var”) are highly correlated due to common regulatory effect (for 
a given gene). We focus on modeling the difference of read 
counts not only to avoid dealing with the high correlation between 
“ref” and “var” reads but also to reduce possible correlation 
across SNPs and confounding effects that impact on “ref” and 
“var” in the same way.	
  

Figure 1: Data Visualization 

METHODS 
Dataset 
•  Human brain tissue from 10 different regions (5 cortical, 5 

subcortical/brainstem) in 10 subject (100 total samples) 
•  Whole-transcriptome RNA-Seq using SOLiD technology 
•  Aligned using IUPAC ambiguity codes to alleviate inherent 

allelic bias 
•  Tested here on a single gene (SLC1A3)  
•  Only single nucleotide polymorphisms (SNPs) confirmed 

heterozygous from high-density array included for analysis 
•  At least 3 reads/allele required for analysis 
•  Includes both intronic and exonic SNPs 

Let      and      be the “ref” and “var” read counts respectively. 
We assume                follow a Skellam mixture distribution with 
unknown fixed number of mixture components (K). That is,   
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• Read_counts_difference = “ref” – “var”. Cor(“ref”, “var”)=0.893. Total number of SNPs = 163. 
• Number of SNPs by sample: 21, 33, 53, 13, 19, and 24 correspond to sample “MB011” through 
“MB202”.  
• Number of SNPs grouped by brain region: 18, 12, 14, 23, 28, 21, 16, 14, 9, and 8 correspond to 
brain region 1 through 10.   
• Number of SNPs grouped by location: 4, 53, and 106 correspond to exonic, intronic, and UTR3. 

Figure 2. Classification of SNPs Using Skellam Mixture 

Figure 3. Simulation Sample From Fitted Skellam Model 

Component	
  1	
   Component	
  2	
   Component	
  3	
   Component	
  4	
  

pi	
  
0.0124	
  

(0.0112,	
  0.0124)	
  

0.8073	
  

(0.79,	
  0.81)	
  

0.1101	
  

(0.109,	
  0.122)	
  

0.0702	
  

(0.064,	
  0.073)	
  

lambda1	
  
132.0283	
  

(129.87,	
  139.79)	
  

22.7526	
  

(20.64,	
  24.03)	
  

13.0100	
  

(12.68,	
  22.08)	
  

53.2318	
  

(48.32,	
  58.44)	
  

lambda2	
  
48.3224	
  

(46.092,	
  56.336)	
  

22.0783	
  

(19.93,	
  23.10)	
  

41.5387	
  

(40.77,	
  50.26)	
  

21.9563	
  

(16.49,	
  25.84)	
  

#	
  of	
  Comp.	
   loglik	
   BIC	
  

3	
   -­‐663.185	
   1367.12	
  

4	
   -­‐652.226	
   1360.482	
  

5	
   -­‐652.851	
   1377.015	
  

6	
   -­‐653.236	
   1393.067	
  

All fitting are done using EM algorithm with 10,000 sets of  initials. For each set of initials, local 
maximum of log-likelihood  is found when the relative log-likelihood difference between 
successive iterations is less than 10^(-3). 	
  

Sample	
  
Classifica?on	
  (UTR3	
  ONLY)	
  

C1	
   C2	
   C3	
   C4	
  
MB011	
   0	
   3	
   7	
   0	
  
MB052	
   0	
   22	
   3	
   4	
  
MB059	
   2	
   20	
   5	
   7	
  
MB100	
   0	
   10	
   0	
   0	
  
MB151	
   0	
   0	
   0	
   0	
  
MB202	
   0	
   19	
   4	
   0	
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