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ABSTRACT

Reaction-Diffusion models are key components of models in develop-
mental biology. These reaction diffusion processes can be mathemati-
cally modeled using either deterministic partial differential equations or
stochastic simulation algorithms. Here we discuss the stochastic simula-
tions on both linear and non-linear Reaction-diffusion models using the
Tau leaping Algorithms.

1 Introduction

Reaction-diffusion systems are mathematical models that describe how
the concentration of one or more substances distributed in space changes
under the influence of two processes: local chemical reactions in which
the substances are converted into each other, and diffusion which causes
the substances to spread out in space.

To motivate the use of stochastic modeling in cells, we demonstrate that
stochastic modeling can explain qualitative behavior in cells that deter-
ministic models can not.
Let us consider the system of chemical reactions for chemical A intro-
duced by Schlogl [1]

2A
κ1−−−→←−−−−
κ2

3A, φ
κ3−−−→←−−−−
κ4

A

, the corresponding ODE of the above reactions:

da

dt
= −κ2a

3 + κ1a
2 − κ4a + κ3

We take κ1 = 0.18min−1, κ2 = 2.5 × 10−4 min−1, κ3 = 200 min−1 and
κ4 = 37.5 min−1 . The above ODE has two stable steady states. i.e, at 100
and 400. The ODE solution is converging to a one stable point depend
on the initial condition, where as stochastic simulation the number of
molecules switching to both the steady states for large time.
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Diffusion

Diffusion is the randommigration of molecules arising from motion due
to thermal energy
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2 Compartmental Based Approach

We divide the computational domain [0, L] into K compartments of
length h = L/K . We denote the number of molecules of chemical species
A in the i-th compartment [(i − 1)h, ih] by Ai, i = 1, ..., K . Then our dif-
fusion process is described by the system of chemical reactions

A1

d−−→←−−−−
d

A2

d−−→←−−−−
d

A3

d−−→←−−−−
d

......
d−−→←−−−−
d

AK (1)

where d is given by d = D
h2 ,D is diffusion constant and h is the compart-

mental length.
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A16(0) = 500 = A17(0) and Ai(0) = 0 fori �= 16, i �= 17. d = 0.16sec−1

3 Reaction-Diffusion Model

3.1 Linear Model

In this section we add chemical reactions to the the molecular diffusion
which were presented in the previous section

A1

d−−→←−−−−
d

A2

d−−→←−−−−
d

A3

d−−→←−−−−
d

......
d−−→←−−−−
d

AK (2)

Ai
k1−−→ φ, for i = 1, 2, ...., K. (3)

φ
k2−−→ Ai, for i = 1, 2, ...., K/5. (4)

Equation(2) describes diffusion. In particular, the rate constant d is given
by d = D

h2 . Equation (3) describes the degradation of A and is, in fact,
equation applied to every compartment. Equation(4) describes the pro-
duction of A in the first K/5 compartments. (e.g. in part [0,L/5] of the
computational domain).
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Starting with no molecules of A in the above system, we plot the num-
ber of molecules in each compartment at different times. We consider
molecules of A which are diffusing in the domain [0, L], where L = 1mm,
with diffusion constant D = 10−4mm2 sec−1

4 Non-linear Model

In the previous section, we studied an example of a reaction-diffusion
model which did not include the second order chemical reactions. We
considered only production and degradation. In this section, we will
talk about the generalization of our approach to models which involves
second-order chemical reactions too.

This is an example of patterning in developmental biology are the so-
called Turing patterns [6] . They do not require any pre patterning.
Molecules are subject to the same chemical reactions in the whole do-
main of interest. For example, let us consider a system of two chemical
species A and B which react according to the Schnakenberg [7] system of
chemical reactions.

2A + B
k1−−→ 3A, (5)

φ
k2−−−→←−−−−
k3

A (6)

φ
k4−−−→ B, (7)

To simulate the reaction-diffusion problem with the Schnakenberg sys-
tem of chemical reactions (5) - (7). We divide the computational domain
[0, L] into K = 50 compartments of length h = L

K = 20μm. We denote
the number of molecules of chemical species A in the i−th compartment
[(i − 1)h, ih] by Ai and Similarly for chemical species Bi, i = 1, 2, ...., K .
Diffusion corresponds to two chains of “chemical reactions”:

A1

dA−−−→←−−−−−
dA

A2

dA−−−→←−−−−−
dA

A3

dA−−−→←−−−−−
dA

......
dA−−−→←−−−−−
dA

AK (8)

B1

dB−−−→←−−−−−
dB

B2

dB−−−→←−−−−−
dB

B3

dB−−−→←−−−−−
dB

......
dB−−−→←−−−−−
dB

BK (9)
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For the above reaction diffusion processes, values of rate constants as
k1 = 10−6 sec−1,k2 = 1 sec−1, k3 = 0.02 sec−1and k4 = 3 sec−1. We
denote the diffusion constants of A and B are DAand DB respectively
and we choose DA = 10−5 mm2 sec−1 andDB = 10−3 mm2 sec−1.
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Conclusions

Turing Pattern model (5) -(9 ) is implemented with SSA[2] and Tau Leap-
ing [4]-[5] algorithms in Fortran for 104 iterations.
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Histogram of chemical species A in the 20th compartment at time 4 mts.

 

 

SSA
Postleap with ε = 0.1
Preleap with ε = 0.05 
Preleap with ε = 0.1

Algorithm ε CPUtime
SSA[2] - 331 mnts

Pre Tau[4] 0.1 11 mnts
0.05 28mnts

Post Tau[5] 0.1 20mnts
0.05 53mnts

Postleap algorithm with ε = 0.1 gives the same accuracy as of Preleap
ε = 0.05, but preleap required 40%more CPU time than postleap.
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