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ABSTRACT

We use a simple discrete stochastic network model to describe a hybridization reaction on an
Affymetrix microarray (GeneChip) obtained by discretization of the standard Langmuir model of
adsorption-desorption. The approach allows us to derive some new stochastic laws for filtering
microarray signals.

1 INTRODUCTION

The Affymetrix GeneChip design is one of the most common ones for oligonucleotide DNA mi-
croarrays. The major limitation of the technology is that rather than the molecular target con-
centration it only records the empirical measures of expression (i.e., the scanner-measured flu-
orescence). These fluorescence readings are subject to optical noise, non-specific hybridization,
probe-specific effects, and measurement error, and can often lead to imprecise and inaccurate re-
sults (see, e.g., [6]). A development of a method of extracting target concentrations from noisy
uorescence readings on a GeneChip is therefore of great interest. One approach is to model the
chip hybridization process as a network of discrete biochemical reactions following the Langmuir
adsorption-desorption model.

Close-up of one probe region on a GeneChip

Actual size of
GeneChip~ array

Millions of DNA strands built up in each location

500,000 locations on each GeneChip® array
Actual strand = 26 base pairs

Image courtesy of Affymetrix

Raw data from .cel files from Affymetrix Latin Square spike-in experiment with fits to Langmuir
isotherm, Red = PM, Black = MM
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Images courtesy of SCB at MCG (http:/ /scb.mcg.edu).

3 LiMIT THEOREM

For z,v > 0 denote
Yy
I(z,v) = / s* Lexp(—s)ds
0

For any «, 3 > 0let IG(w, 3,1) denote an Incomplete Gamma Distribution with the density func-
tion

fl@) =T(a,8) g% exp(—2f)
for z € (0,1) and zero otherwise.
We say that the random variable Z has the Langmuir-Incomplete Gamma Distribution with pa-
rameters «, 5 (LIG(w, 8)) satisfying 8 > « > 0 if the following equality in distribution holds

Z2 1 = ro )W + 7061

where the random variable I is distributed according to IG(«, 3, 1), 4, is the Dirac delta function
at x and

Ba

B+ T(a, ) (B — o) exp(D)

T, =

Limit Theorem for LBD Process Let X 1(\7’) be the stationary distributions of LBD Process under M;
fori=1,2,3,and leta = ¢1/c3 and b = (c1 + ¢2)/c3, as well as Yzﬂf) = X](\})/N. Then, as N — oo
we have weak convergence
v Bz i=1,23
where the limiting random variables Z; are as follows
(i) 2, is distributed as LIG(a, b)
(ii) Z5 is such that 1 — Z, is distributed as LIG(b — a,b)
(iii) Z5 is Beta(a,b — a)

One of the most popular adsorption models considered in the context of microarrays (cf. e.g., [3]
or [1]) is the so-called Langmuir model which in its simplest deterministic form describes the re-
lationship between concentration and fluorescence levels of probe-target complexes by means of
a hyperbolic function. Let u = u(t) € (0, 1) be a fraction of sites within a probe region occupied by
probe-target duplexes at time ¢ after the commencement of hybridization. Adsorption reaction is
assumed to occur at a rate dyz:(1 —u), proportional to target concentration z and fraction (1 —u) of
unoccupied probe sites. Desorption reaction is assumed to occur at a rate d, u, proportional to the
fraction of occupied probe sites. The fraction of probe sites occupied by probe-target complexes
is given by the Langmuir equation

% = le — ((11.’1) + dg)u

In order to properly account for the effects of multiple simultaneous hybridizations as well as the
cross-hybridization due to competition between similarly sequenced targets for the same probe
regions, its seems that the stochastic version of the Langmuir model is needed.

2 THE LANGMUIR BIRTH DEATH MODEL

Let assume no probe interactions. We consider a simple one dimensional birth-death process
described by one chemical species Dplz (the amount of probe-target duplex). Hence, we consider
two coupled chemical reaction

0 20, Dplx
Dplx 40, 0.

Langmuir Birth-Death Process is any BD process with the set of states {0,..., N} and the birth
and death rates of the form

b(k) = c1(N — k) +C(k, N)
d(k) = cak +C(k, N)

fork =0,...,N, wherecy, co > 0 are some constants and the function C(-, V) is intended to model
the noise of the non-target adsorption and desorption annd is assumed to satisfy the boundary
conditions C(0, N) = C(N,N) = 0.

In GineChip array C(-, N) accounts for the competition for the same RNA targets between differ-
ent probe regions with similar nucleotide sequences. Herein we consider only C(k, V) given by
the functions Ci,C,,Cs defined below with the corresponding models henceforth referred to as
MM

Ci(k,N) =c3Nk for0 <k < NandCi;(N,N)=0 (My)
Cz(qu) = C;;N(N — k) for0 < k <N and CQ(UAN) =0 (A[g)
Cg(k',]v) = Cgk(N — k‘) for 0 S k S N (]\[5)

Two assumptions on hybridization under M;

o the level of the target-specific signal in the probe region has lower magnitude than the level
of non-specific signal (i.e., signal noise)

e the non-specific signal noise is proportional to the total system (i.e., probe region) size as
well and the current system state and the target concentration

4 CONCLUSIONS

e Our results imply that the (incomplete) gamma and beta type distributions could be used
as approximations to the observed uorescence readings of the oligo-probes on a GeneChip
microarray.

e Both M; and M, models are amenable to the gamma-type approximation of their stationary
distributions (with some proper adjustment for the boundary probability)

e M; with ‘boundary symmetric’ noise term yields a beta stationary distribution with no
boundary effects.
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