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ABSTRACT

We use a simple discrete stochastic network model to describe a hybridization reaction on an
Affymetrix microarray (GeneChip) obtained by discretization of the standard Langmuir model of
adsorption-desorption. The approach allows us to derive some new stochastic laws for filtering
microarray signals.

1 INTRODUCTION
The Affymetrix GeneChip design is one of the most common ones for oligonucleotide DNA mi-
croarrays. The major limitation of the technology is that rather than the molecular target con-
centration it only records the empirical measures of expression (i.e., the scanner-measured flu-
orescence). These fluorescence readings are subject to optical noise, non-specific hybridization,
probe-specific effects, and measurement error, and can often lead to imprecise and inaccurate re-
sults (see, e.g., [6]). A development of a method of extracting target concentrations from noisy
uorescence readings on a GeneChip is therefore of great interest. One approach is to model the
chip hybridization process as a network of discrete biochemical reactions following the Langmuir
adsorption-desorption model.
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One of the most popular adsorption models considered in the context of microarrays (cf. e.g., [3]
or [1]) is the so-called Langmuir model which in its simplest deterministic form describes the re-
lationship between concentration and fluorescence levels of probe-target complexes by means of
a hyperbolic function. Let u = u(t) ∈ (0, 1) be a fraction of sites within a probe region occupied by
probe-target duplexes at time t after the commencement of hybridization. Adsorption reaction is
assumed to occur at a rate d1x(1−u), proportional to target concentration x and fraction (1−u) of
unoccupied probe sites. Desorption reaction is assumed to occur at a rate d2 u, proportional to the
fraction of occupied probe sites. The fraction of probe sites occupied by probe-target complexes
is given by the Langmuir equation

du

dt
= d1x − (d1x + d2)u

In order to properly account for the effects of multiple simultaneous hybridizations as well as the
cross-hybridization due to competition between similarly sequenced targets for the same probe
regions, its seems that the stochastic version of the Langmuir model is needed.
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2 THE LANGMUIR BIRTH DEATH MODEL
Let assume no probe interactions. We consider a simple one dimensional birth-death process
described by one chemical speciesDplx (the amount of probe-target duplex). Hence, we consider
two coupled chemical reaction

∅ b(·)−→ Dplx

Dplx
d(·)−→ ∅.

Langmuir Birth-Death Process is any BD process with the set of states {0, . . . , N} and the birth
and death rates of the form

b(k) = c1(N − k) + C(k, N)
d(k) = c2 k + C(k, N)

for k = 0, . . . , N , where c1, c2 > 0 are some constants and the function C(·, N) is intended tomodel
the noise of the non-target adsorption and desorption annd is assumed to satisfy the boundary
conditions C(0, N) = C(N, N) = 0.
In GineChip array C(·, N) accounts for the competition for the same RNA targets between differ-
ent probe regions with similar nucleotide sequences. Herein we consider only C(k, N) given by
the functions C1, C2, C3 defined below with the corresponding models henceforth referred to as
M1–M3

C1(k, N) = c3Nk for 0 ≤ k < N and C1(N, N) = 0 (M1)
C2(k, N) = c3N(N − k) for 0 < k ≤ N and C2(0, N) = 0 (M2)
C3(k, N) = c3k(N − k) for 0 ≤ k ≤ N (M3)

Two assumptions on hybridization underM1

• the level of the target-specific signal in the probe region has lower magnitude than the level
of non-specific signal (i.e., signal noise)

• the non-specific signal noise is proportional to the total system (i.e., probe region) size as
well and the current system state and the target concentration

3 LIMIT THEOREM
For z, γ > 0 denote

Γ(z, γ) =
∫ γ

0
sz−1 exp(−s) ds

For any α, β > 0 let IG(α, β, 1) denote an Incomplete Gamma Distribution with the density func-
tion

f(x) = Γ(α, β)−1 βα xα−1 exp(−xβ)

for x ∈ (0, 1) and zero otherwise.
We say that the random variable Z has the Langmuir-Incomplete Gamma Distribution with pa-
rameters α, β (LIG(α, β)) satisfying β > α > 0 if the following equality in distribution holds

Z
D= (1 − πα,β)W + πα,β δ1

where the random variableW is distributed according to IG(α, β, 1), δx is the Dirac delta function
at x and

πα,β =
βα

βα + Γ(α, β) (β − α) exp(β)

Limit Theorem for LBD Process LetX(i)
N be the stationary distributions of LBD Process underMi

for i = 1, 2, 3, and let a = c1/c3 and b = (c1 + c2)/c3, as well as Y (i)
N = X(i)

N /N . Then, as N → ∞
we have weak convergence

Y (i)
N

D→ Zi i = 1, 2, 3

where the limiting random variables Zi are as follows
(i) Z1 is distributed as LIG(a, b)
(ii) Z2 is such that 1 −Z2 is distributed as LIG(b − a, b)
(iii) Z3 is Beta(a, b − a)

4 CONCLUSIONS
• Our results imply that the (incomplete) gamma and beta type distributions could be used
as approximations to the observed uorescence readings of the oligo-probes on a GeneChip
microarray.

• BothM1 andM2 models are amenable to the gamma-type approximation of their stationary
distributions (with some proper adjustment for the boundary probability)

• M3 with ’boundary symmetric’ noise term yields a beta stationary distribution with no
boundary effects.
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