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ABSTRACT

Salivary glands are often damaged or destroyed by radiation therapy or
surgery for head and neck cancers, or by advanced Sjogrenâs syndrome.
In order to engineer or replace salivary glands, it is important to identify
gene networks of the parotid acinar cells. Under this situation, Li(2010)
proposed ordinary differential equation (ODE) models for three genes
which have important roles in recovering salivary glands. However,
since functional relationships between these three genes are unknown,
we need to investigate the validation of these models and this is done by
providing credibility bounds obtained from the Bayesian approach.

1 Introduction
Salivary glands are important for producing salivary proteins which con-
tribute to host defense, lubrication, and digestion. However, salivary
glands are often damaged or destroyed by radiation therapy or surgery
for head and neck cancers, or by advanced Sjogrenâs syndrome. The
serous acinar cell is the salivary cell type that is mos0t sensitive to radi-
ation. Efforts to engineer or replace salivary glands are not likely to be
fully successful due to our near-total lack of knowledge about the sig-
naling and transcription factor pathways that direct terminal differenti-
ation of acinar cells. Thus, it is important to define the major intracel-
lular pathways of the nuclear program that causes terminal differentia-
tion of the parotid acinar cell. Gene network discovery is a critical part
to do this. Under this situation, Li(2010) proposed ordinary differential
equation (ODE) models for three genes Mist1, PSP, and Amylase which
are important roles in recovering salivary glands. However, in practice,
functional relationships between these three genes are unknown. Thus,
in this study, we investigate whether these models have the validity for
given mRNA expression time series data using the Bayesian approach.

2 Methods
2.1 ODE models
The mechanism of the gene regulations can be described by

Rate of Change = Activation - Inhibition - Degradation.

Reciprocal regulation, feedback loop, and feed-forward loop involving
transcription factors(TF) play critical roles.

Gene network of salivary gland (by D. Darling)

[2] hypothesized that the transcription is carried out by dimerization of
Mist1 molecules and saturations of PSP and Amylase are attained when
Mist1 is abundant. Under these hypotheses, the reactions and the ODE
models proposed in [2] are as follows:

Mist1 (M) → PSP (P ), Mist1 (M) → Amylase (A).

dA

dt
=

v1M2

v2
2 + M2

− v3A, (1)

dM

dt
= −v4M, (2)

dP

dt
=

v5M2

v2
6 + M2

− v7P, (3)

where A(0) = 1, M(0) = 1, and P (0) = 1, and where v3, v4, and v7 are
the degradation rates; v1 and v5 are the maximum reaction rate; and v2

and v6 are the half saturation points.

2.2 Experiments
Parotid glands from several rats are collected and pooled. The acinar
cells are isolated from the fibroblasts. This single pool of acinar cells was
then split into maximum 10 wells of 6-well plates, and cultured for 0, 1,
6, and 24 hours. At each time point, the cells in two different wells were
are separately to make RNA samples. Thus, we have duplicated RNA
samples at each time. These duplicates are cultured separately but orig-
inally come from the same pool of cells. In the next step, the expression
of specific genes in the RNA samples are measured from RT-PCR assays.
The result for each gene for each RNA samples are normalized to Gapdh
gene which is an internal control that does not change. Then, for each
gene and time, we have values for two biological replicates expressed
relative to the initial value at 0 hour. These two biological replicates are
averaged for each gene and time.
In the experiments, we assume that mRNA expressions cultured from
different wells are independent. Thus, these average values of two bio-
logical replicates are independent for each gene and time. For the three
genes of our interest, Amylase has three independent experiments, Mist1
is performed for seven independent experiments, and PSP has four inde-
pendent experiments.

2.3 Validation

! Time-course data:
– yij(t), i = A, M, P , j = 1, . . . , ri: k × 1 vectors for Amylase,
Mist1, and PSP (j-th experiment for gene i).

– Vector of time points: t = (t1, . . . , tK)′, where K = 3 and
t1 = 1, t2 = 6, and t3 = 24.

– The number of experiments: rA = 3, rM = 7, and rP = 4.

! Model:

yL
ij(t) = yM

ij (t|vi) + bi(t) + εij(t), i = A, M, P, j = 1, . . . , ri, (4)

– yL
ij(t): the vector of the actual measurements.

– yM
ij (t|vi): outputs from the ODE models in (1), (2), and (3).

– vi, i = A, M, P : the vector of parameters of the ODE mod-
els for each gene (i.e., vA = (v1, v2, v3)′, vM = v4, and
vP = (v5, v6, v7)′).

– bi(t) (≡ bi): the model bias.
– εij(t): the vector of measurement error.

! Likelihood function:

L(yL
i (t)|vi,bi) ∼ MV N(µi, δiI), (5)

– µi = (fi(t1,vi) + bi(t1), . . . , fi(tk,vi) + bi(tK))′, where fi(·) is
the solution of the ODE models defined in (1), (2), and (3).

! Prior distribution:
– vi’s have independent gamma distributions.
– bi ∼ MV N(0,C), whereC = [exp{−(ti − tj)2}]mn.

! Posterior distribution:

p(vA,vM ,vP ,bA,bM ,bp|yL
A(t), yL

M (t), yL
P (t))

∝
∏

i={A,M,P}

L(yL
i (t)|vi,bi)p(vi,bi).

! MCMC analysis:
– vil and bil, i = A, M, P , l = 1, . . . , n: n posterior samples.
– Posterior mean for vi:

v̂i =
1
n

n∑

l=1

vil, i = A, M, P. (6)

– Posterior mean for bi:

b̂i =
1
n

n∑

l=1

bil, i = A, M, P. (7)

– Bias-corrected prediction:

ŷL
i (t) =

1
n

n∑

l=1

[
yM

i (t,vil) + bil

]
, i = A, M, P. (8)

– Pure model prediction:

b̂v̂i
i = ŷL

i (t) − yM
i (t, v̂i), i = A, M, P. (9)

– Variance of the bias-corrected predictor (8):

V {ŷL
i (t)} =

1
n

n∑

l=1

[
yM

i (t,vil) + bil − ŷL
i (t)

]2
, i = A, M, P.

(10)
– (1 − α)% credibility bound: α/2 and (1 − α/2)% quantiles for

(yM
i (t,vil + bil).

! Sensitivity analysis:

sensvm(t, v̂i) =
fvm

i (t,vi)
fi(t,vi)

∣∣∣∣
vi=v̂i

, m = 1, . . . , 7, i = A, M, P. (11)

– fvm
i (t,vi) = ∂fi(t,vi)/∂vm: gradient of fi(t,vi) in the direc-
tion of vm.

3 Results
It is not easy to obtain the convergence of posterior distributions with
high-dimension in the MCMC analysis. In our case, we deal with 16 pa-
rameters (16 dimensions). For the given data, we could not obtain the
convergence of all 16 parameters simultaneously in the MCMC proce-
dure. Thus, we fixed bias terms of PSP at 1 and 6 hours (i.e., bP (t1) and
bP (t2)) by the posterior means obtained when the other parameters are
fixed. For fixed bP (t1) and bP (t2), we attained the convergence of the
posterior distributions for the other 14 parameters.
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Actual data (circle) vs pure model prediction yM
i (t,vi) (red line) and bias

corrected model prediction ŷL
i (t) (black line) along with 95% credibility

bounds (green dotted line); (Left panel) Amylase, (Center panel) Mist1,
(Right panel) PSP.
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Bias (Left panel) and variance (Right panel) of the model prediction for
data via (9) and (10).
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The posterior distributions of the parameters v1, . . . , v7 of the ODE mod-
els.
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The relative gradient of the ODE models, that is, sensvm(t, v̂i), m =
1, . . . , 7 given by (11).

4 Conclusion
The ODE models proposed by Li(2010) hypothesized that the transcrip-
tion is carried out by dimerization of Mist1 molecules and saturations of
PSP and Amylase are attained when Mist1 is abundant. In this study, for
the observed data, we test these hypotheses by using the Bayesian ap-
proach, and the results from the MCMC analysis support the hypotheses
of these ODE models.
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